Abstract
Increasing aggregation induced emission (AIE) efficiency is of fundamental interest as it directly reflects performance of multitwist-based luminogens in bioimaging and in the photoelectric device field. However, an effective and convenient methodology to increase AIE efficiency significantly remains a challenge. Here, we present a general strategy to increase AIE efficiency of multitwist-based luminogens by pressure, resulting in a 120.1-fold enhancement of the AIE intensity of tris[4-(diethylamino)phenyl]amine (TDAPA) under high pressure compared to that of the traditional method. AIE efficiency of TDAPA increases from 0.5% to 46.1% during compression. Experimental and theoretical investigations reveal that the AIE efficiency enhancement originates from intramolecular vibration and the twisted intramolecular charge transfer are suppressed under high pressure. High AIE efficiency under high pressure provides an important inspiration for improving performance of multitwist-based luminogens in the lighting and biomedical fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.