Abstract

Lead halide perovskites have some unique properties which are very promising for optoelectronic applications such as solar cells, LEDs and lasers. One important and expected application of perovskite halide semiconductors is solar cell operation including hot carriers. This advanced solar cell concept allows overcoming the Shockley–Queisser efficiency limit, thereby achieving energy conversion efficiency as high as 66% by extracting hot carriers. Understanding ultrafast photoexcited carrier dynamics and extraction in lead halide perovskites is crucial for these applications. Here, we clarify the hot carrier cooling and transfer dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy and Al2O3, poly(3-hexylthiophene-2,5-diyl) (P3HT) and TiO2 as selective contacts. We find that slow hot carrier cooling occurs on a timescale longer than 10 ps in the cases of CsPbI3/Al2O3 and CsPbI3/ TiO2, which is attributed to hot phonon bottleneck for the high photoexcited carrier density. An efficient ultrafast hole transfer from CsPbI3 to the P3HT hole extracting layer is observed. These results suggest that hot holes can be extracted by appropriate selective contacts before energy dissipation into the halide perovskite lattice and that CsPbI3 has a potential for hot carrier solar cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.