Abstract

Antiferromagnets exhibit distinctive characteristics such as ultrafast dynamics and robustness against perturbative fields, thereby attracting considerable interest in fundamental physics and technological applications. Recently, it was revealed that the Néel vector can be switched by a current-induced staggered (Néel) spin-orbit torque in antiferromagnets with the parity-time symmetry, and furthermore, a nonsymmorphic symmetry enables the control of Dirac fermions. However, the real-time dynamics of the magnetic and electronic structures remain largely unexplored. Here, we propose a theory of the ultrafast dynamics in antiferromagnetic Dirac semimetals and show that the Néel vector is rotated in the picosecond timescale by the terahertz-pulse-induced Néel spin-orbit torque and other torques originating from magnetic anisotropies. This reorientation accompanies the modulation of the mass of Dirac fermions and can be observed in real time by the magneto-optical effects. Our results provide a theoretical basis for emerging ultrafast antiferromagnetic spintronics combined with the topological aspects of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.