Abstract

The orbital Hall effect can generate currents of angular momentum more efficiently than the spin Hall effect in most metals. However, so far, it has only been understood as a steady-state phenomenon. In this theoretical study, the orbital Hall effect is extended into the time domain. We investigate the orbital angular momenta and their currents induced by a femtosecond laser pulse in a Cu nanoribbon. Our numerical simulations provide detailed insights into the laser-driven electron dynamics on ultrashort timescales with atomic resolution. The ultrafast orbital Hall effect described in this paper is consistent with the familiar pictorial representation of the static orbital Hall effect, but we also find pronounced differences between physical quantities that carry orbital angular momentum and those that carry charge. For example, there are deviations in the time series of the respective currents. This paper lays the foundations for investigating ultrafast Hall effects in confined metallic systems. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.