Abstract
Ultrafast optical microscopy (UOM) combines a typical optical microscope and femtosecond (fs) lasers that produce high intensity, ultrashort pulses at high repetition rates over a broad wavelength range. This enables us new types of imaging modalities, including scanning optical pump-probe microscopy, which varies the pump and probe positions relatively on the sample and ultrafast optical wide field microscopy, which is capable of rapidly acquiring wide field images at different time delays, that is measurable nearly any sample in a non-contact manner with high spatial and temporal resolution simultaneously. We directly tracked carriers in space and time throughout a NW by varying the focused position of a strong optical “pump” pulse along the Si core-shell nanowires (NWs) axis while probing the resulting changes in carrier density with a weaker “probe” pulse at one end of the NW. The resulting time-dependent dynamics reveals the influence of oxide layer encapsulation on surface state passivation in core-shell NWs, as well as the presence of strong acoustic phonon oscillations, observed here for the first time in single NWs. Time-resolved wide field images of the photoinduced changes in transmission for a patterned semiconductor thin film and a single silicon nanowire after optical excitation are also captured in real time using a two dimensional smart pixel array detector. Our experiments enable us to extract several fundamental parameters in these samples, including the diffusion current, surface recombination velocity, diffusion coefficients, and diffusion velocities, without the influence of contacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.