Abstract

Active terahertz metasurface devices have been widely used in communication technology, optical computing and biosensing. However, numerous dynamically tunable metasurfaces are only operating at a single frequency point or in a narrow range, limiting the further possibility of the devices to meet contemporary broad-spectrum biosensing requirements. In this paper, a novel compact biosensor is proposed with an ultrawide resonance frequency agile channel shifted from 0.82 to 1.85 THz, with a tuning functionality up to 55.7%. In addition, under optical pumping irradiation, the modulator with ultra-fast response is able to complete the ultra-wideband resonant mode conversion from the Fano mode to the electromagnetically induced transparency (EIT) mode within 4 ps, and achieves a frequency shift sensitivity of 118 GHz RIU-1 and 247 GHz RIU-1 at 0.82 and 1.85 THz, respectively. This mechanism implements both refractive index and conductivity sensing functions, which provide a wealth of sensing information. Thus, this work presents the possibility of realising the detection of ultra-wide fingerprint spectra and can be extended to a wider range of optical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.