Abstract

Manufacturing multifunctional nanocomposite materials and engineered surface nanopatterns involves a strategic blend of topography, crystal structures, and chemistry. Here, we report the controllable formation of crystalline nanoparticles and intermetallic compounds on thin films of metallic glasses (Zr50Cu50, Ti50Cu50, and Zr67Ag33) irradiated by ultrafast laser beams. Mapping the structural modification of the photoexcited and subsequently heated alloys reveals previously neglected chemical reactions with air, offering a direct solution for incorporating nanoparticles into an amorphous oxide matrix and broadening the range of laser-induced surface self-organization features. Our findings are attributed to the occurrence and enrichment of oxygen surface contamination that reacts with selected elements of the metallic glasses. Additionally, the growth of the crystalline phase from undercooled liquid may originate from the dissolution of oxides. Finally, our results establish that the combination of crystalline nanoparticles on amorphous periodic patterns can be universally obtained in a wide range of binary systems of irradiated metallic glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.