Abstract

The multi-time scale ultrafast laser model of axisymmetric geometry presented in Part I is validated with computed carrier densities and melting thresholds that agree well with published physical data. Transport phenomena initiated by femtoseconds heating including the spatial and temporal evolutions of electron and lattice temperatures and electron-hole carrier density are highly localized in both time and space. The temporal and spatial scales associated with the generation of thermal stress waves are significantly larger at tenths of nanoseconds and microns, respectively. Ultrashort laser pulse induced transverse stress waves are highly dispersive and characteristically of broadband, low amplitude, and extremely high frequency and power density contents. Near-field responses that precede the development of a full-blown plate wave are also localized in space with a power density magnitude on the order of 1013 Watts per cubic meters in volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.