Abstract

We develop a model describing non-equilibrium processes under the excitation of resonant semiconductor nanostructures with ultrashort laser pulses with a duration of about 100 fs. We focus on the heating effects related to pulsed excitation with account on free carriers generation, thermalization, and relaxation. The heat exchange between the electron and phonon system is treated within the two-temperature model. We applied the developed model to describing pulsed heating of silicon nanocylinder on top of a dielectric substrate. We come up with estimations of the thermal damage threshold of the considered structures which provides the limits for the experimental conditions and ensures thermal stability of the samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.