Abstract
Quantum-size semiconductor microcrystallites of ZnCdS and CdS in aqueous and isopropanol solution were optically excited using intense sub-picosecond UV laser pump pulses. Broad-band optical probing monitored the yield of electron emission and the build-up of primary photochemical products. With typical pmp fluences of femtosecond light pulses multiple photons are absorbed by one quantum-dot leading to a quantum yield of up to 0.3 of photogenerated electrons. The yield curves, as a function of pump fluence, are described by a simple kinetic model which involves the trapping-rate constant and a maximum number of electrons which can be emitted per particle. This model is shown to be consistent with thermodynamic considerations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.