Abstract

Femtosecond laser-driven approximately 1 GPa shock waves are used to compress monolayers of hydrocarbon chains. Vibrational sum-frequency generation spectroscopy probes the orientation of the terminal methyl groups. With an odd number (15) of carbon atoms, shock compression is an elastic process that causes the methyl groups to tilt. With an even number (18) of carbon atoms, shock compression is viscoelastic, creating single and double gauche defects. When the shock unloads, single gauche defects remain while double defects relax in 30 ps to single-defect states with more upright methyl groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.