Abstract

Short-range protein electron transfer (ET) is crucially important in light-induced biological processes such as in photoenzymes and photoreceptors and often occurs on time scales similar to those of environment fluctuations, leading to a coupled dynamic process. Herein, we use semiquinone Anabaena flavodoxin to characterize the ultrafast photoinduced redox cycle of the wild type and seven mutants by ultrafast spectroscopy. We have found that the forward and backward ET dynamics show stretched behaviors in a few picoseconds (1-5 ps), indicating a coupling with the local protein fluctuations. By comparison with the results from semiquinone D. vulgaris flavodoxin, we find that the electronic coupling is crucial to the ET rates. With our new nonergodic model, we obtain smaller values of the outer reorganization energy (λoγ) of environment fluctuations and the reaction free energy force (ΔGγ), a signature of nonequilibrium ET dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.