Abstract

A theoretical investigation of the ultrafast processes and dynamics of the excited carriers upon irradiation of GaAs with femtosecond (fs) pulsed lasers is performed in conditions that induce material damage and eventually surface modification of the heated solid. A parametric study is followed to correlate the produced transient carrier density with the damage threshold for various pulse duration values {\tau}p (it increases as ~ at relatively small values of {\tau}p while it drops for pulse durations of the order of some picoseconds) based on the investigation of the fundamental multiscale physical processes following fs-laser irradiation. Moreover, fluence values for which the originally semiconducting material demonstrates a metallic behaviour are estimated. It is shown that a sufficient number of carriers in the conduction band are produced to excite Surface Plasmon (SP) waves that upon coupling with the incident beam and a fluid-based surface modification mechanism lead to the formation of sub-wavelength periodic structures orientated perpendicularly to the laser beam polarization. Experimental results for the damage threshold and the frequencies of induced periodic structures show a good agreement with the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.