Abstract

In this study, the dynamics of energy carriers in polycrystalline bismuth telluride nanofilm are investigated by the ultrafast pump-probe method. The energy relaxation processes are quantitatively analyzed by using the numerical fitting models. The extracted hot carrier relaxation times of photon excitation, thermalization, and diffusion are around sub-picosecond. The initial reflectivity recovery is found to be dominantly determined by the carrier diffusion, electron-phonon coupling, and photo-generated carriers trapping processes. High-frequency and low-frequency oscillations are both observed and attributed to coherent optical phonons and coherent acoustic phonons, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.