Abstract

The lithium-sulfur battery is a promising high-energy-density storage system, which suffers from severe capacity fading due to the "shuttle effect" and low Coulombic efficiency caused by the dissolution of lithium polysulfides. At the molecular level, suppressing the shuttle effect has been greatly required for high-performance Li-S batteries. Herein, we propose a new strategy by utilizing a protonated organic absorbent (N1,N4-bis(pyridine-3-ylmethyl)butane-1,4-diammonium nitrate ([H2PBD]2+·(NO3)22-) for ultrafast absorption of polysulfides through electrostatic attractions and for fixing the polysulfides in the cathode by hydrogen-bond interactions. A lithium-sulfur battery cathode based on a commercial carbon black (CB) and an absorbent (10%) with high sulfur content (70%) exhibits a low capacity decay of 0.099% per cycle over 400 cycles at a rate of 0.5C along with 91% Coulombic efficiency. This strategy and the finding of an electrostatic absorbent offer a new alternative insight into designing cheaper lithium-sulfur batteries for their practical application in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.