Abstract

Integrated sources of indistinguishable photons have attracted a lot of attention because of their applications in quantum communication and optical quantum computing. Here, we demonstrate an ultracompact quantum splitter for degenerate photon pairs based on a monolithic silicon chip. It incorporates a Sagnac loop and a microring resonator with a total footprint of 0.011 mm2, generating and deterministically splitting indistinguishable photon pairs using two-photon interference. The ring resonator provides an enhanced photon generation rate, and the Sagnac loop ensures the photons travel through equal path lengths and interfere with the correct phase to enable the reversed Hong–Ou–Mandel (HOM) effect to take place. In the experiment, we observed a HOM dip visibility of 94.5±3.3%, indicating the generated photons are in a suitable state for further integration with other components for quantum applications, such as controlled-NOT gates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.