Abstract

An ultracompact hybrid plasmonic waveguide Bragg grating (HPWBG) with improved spectral properties of long-wavelength passband is proposed. A hollow HPW is introduced to suppress the entire loss, and a parabolic profiled sidewall is designed to optimize the spectral properties for specific wave bands. The transfer matrix method and finite element method are combined to ensure the efficiency of numerical research. The results show that the parabolic profile effectively reduces the reflection and strengthens the resonance of the mode in the long-wavelength passband, suppressing the oscillations and realizing significant smoothness and improvement in transmission. The optimized transmittance is greater than 99%, and insertion loss is as low as 0.017dB. A wide bandgap of 103nm is also attained. The structure also has a compactness with a length of 3.4µm and exhibits good tolerance. This work provides a scheme for designing and optimizing wavelength selecting devices and has potential application value in integrated photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.