Abstract

Spatial frequency domain imaging (SFDI) is a powerful, label-free imaging technique capable of the wide-field quantitative mapping of tissue optical properties and, subsequently, chromophore concentrations. While SFDI hardware acquisition methods have advanced towards video-rate, the inverse problem (i.e., the mapping of acquired diffuse reflectance to optical properties) has remained a bottleneck for real-time data processing and visualization. Deep learning methods are adept at fitting nonlinear patterns, and may be ideal for rapidly solving the SFDI inverse problem. While current deep neural networks (DNN) are growing increasingly larger and more complex (e.g., with millions of parameters or more), our study shows that it can also be beneficial to move in the other direction, i.e., make DNNs that are smaller and simpler. Here, we propose an ultracompact, two-layer, fully connected DNN structure (each layer with four and two neurons, respectively) for ultrafast optical property extractions, which is 30×–600× faster than current methods with a similar or improved accuracy, allowing for an inversion time of 5.5 ms for 696 × 520 pixels. We further demonstrated the proposed inverse model in numerical simulations, and comprehensive phantom characterization, as well as offering in vivo measurements of dynamic physiological processes. We further demonstrated that the computation time could achieve another 200× improvement with a GPU device. This deep learning structure will help to enable fast and accurate real-time SFDI measurements, which are crucial for pre-clinical, clinical, and industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.