Abstract

Photoionizing laser-cooled atoms produces ultracold neutral plasmas with initial temperatures of 1–1000 K and densities as high as 1010 cm−3. Applied radio frequency fields can excite plasma oscillations that are used to monitor the expansion of the unconfined plasma. Significant three-body recombination of electrons and ions into Rydberg atoms takes place during the plasma expansion. Previous experiments have been done with xenon, but a new experiment is planned with laser-cooled strontium. The strontium ion has an optically allowed transition at a convenient blue wavelength. This will allow direct imaging of the plasma through fluorescence or absorption, and may enable laser cooling and trapping of the plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.