Abstract

Access to intrinsic properties of a 2D material is challenging due to the absence of a bulk that would dominate over surface contamination, and this lack of bulk also precludes effective conventional cleaning methods that are almost always sacrificial. Suspended graphene and carbon contaminants represent the most salient challenge. This work has achieved ultraclean graphene, attested by electron energy loss (EEL) spectra unprecedentedly exhibiting fine-structure features expected from bonding and band structure. In the cleaning process in a transmission electron microscope, radicals generated by radiolysis of intentionally adsorbed water remove organic contaminants, which would otherwise be feedstock of the notorious electron irradiation induced carbon deposition. This method can be readily adapted to other experimental settings and other materials to enable previously inhibited undertakings that rely on the intrinsic properties or ultimate thinness of 2D materials. Importantly, the method is surprisingly simple and robust, easily implementable with common lab equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.