Abstract

A highly sensitive molecular fluorescence method for measuring ultra-trace levels of beryllium has been previously described. The method entails extraction of beryllium workplace samples by 1% ammonium bifluoride (NH 4HF 2, aqueous), followed by fluorescence detection using hydroxybenzoquinoline sulfonate (HBQS). In this work, modification of the existing procedure resulted in a significant improvement in detection power, thereby enabling ultra-trace determination of beryllium in air filter and surface wipe samples. Such low detection limits may be necessary in view of expected decreases in applicable occupational exposure limits (OELs) for beryllium. Attributes of the modified NH 4HF 2 extraction/HBQS fluorescence method include method detection limits (MDLs) of <0.8 ng to ≈2 ng Be per sample (depending on the fluorometer used), quantitative recoveries from beryllium oxide, a dynamic range of several orders of magnitude, and freedom from interferences. Other key advantages of the technique are field portability, relatively low cost, and high sample throughput. The method performance compares favorably with that of inductively coupled plasma-mass spectrometry (ICP-MS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.