Abstract
We numerically investigate the figures of merit for single-photon emission in a planar GaAs-on-insulator waveguide featuring a V-groove geometry. Thanks to a field enhancement effect arising due to boundary conditions of this waveguide, the structure features an ultra-small mode area enabling a factor of a maximum 2.8 times enhancement of the Purcell factor for quantum dot and a more significant 7 times enhancement for the atomic-size solid-state emitters with the aligned dipole orientation. In addition, the coupling efficiency to the fundamental quasi-TE mode is also improved. To take into account potential on-chip integration, we further show that the V-groove mode profile can be converted using a tapering section to the mode profile of a standard ridge waveguide while maintaining both the high Purcell factor and the good fundamental mode coupling efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.