Abstract

Usually, to characterize bacterial cells' susceptibility to antimicrobials, basic microbiology techniques such as serial dilutions or disk assays are used. In this work, we present an approach focused on combining static light scattering (SLS) and ultra-/small angle X-ray scattering (USAXS/SAXS). This approach was used to support microbiology techniques, with the aim of understanding the structural changes caused to bacteria when they are exposed to different stresses like pH, oxidation, and surfactants. Using USAXS/SAXS and SLS data, we developed a detailed multiscale model for a Gram-positive bacterium, S. epidermidis, and we extracted information regarding changes in the overall size and cell thickness induced by different stresses (i.e., pH and hydrogen peroxide). Increasing the concentration of hydrogen peroxide leads to a progressive reduction in cell wall thickness. Moreover, the concomitant use of pH and hydrogen peroxide provides evidence for a synergy in inhibiting the S. epidermidis growth. These promising results will be used as a starting base to further investigate more complex formulations and improve/refine the data modeling of bacteria in the small angle scattering regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.