Abstract

This letter investigates the problem of providing gigabit wireless access with reliable communication in 5G millimeter-Wave (mmWave) massive multiple-input multiple-output (MIMO) networks. In contrast to the classical network design based on average metrics, a distributed risk-sensitive reinforcement learning-based framework is proposed to jointly optimize the beamwidth and transmit power, while taking into account the sensitivity of mmWave links due to blockage. Numerical results show that our proposed algorithm achieves more than 9 Gbps of user throughput with a guaranteed probability of 90%, whereas the baselines guarantee less than 7.5 Gbps. More importantly, there exists a rate-reliability-network density tradeoff, in which as the user density increases from 16 to 96 per km2, the fraction of users that achieve 4 Gbps are reduced by 11.61% and 39.11% in the proposed and the baseline models, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.