Abstract

We report ultra-low voltage controlled magnetic properties in an amorphous MgO (a-MgO) thin film. The intrinsic magnetization of MgO can be decreased by about 57.5% by the application of a positive bias voltage while increased by about 56.7% by a negative bias, at an ultralow voltage of just 0.2 V. More interestingly, this ultralow voltage also induces a strong magnetic anisotropy in the a-MgO film. Further analysis indicates that the migration of O2− ions under an electric field results in a change in the Mg/O ratio and the redistribution of Mg vacancies, thus leading to the change in the magnetic properties of the film. The control of room temperature magnetic properties at ultralow voltages may find applications in multifunctional memory and ultralow-power consumption spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.