Abstract

The wet-transfer of graphene grown by chemical vapor deposition (CVD) has been the standard procedure for transferring graphene to any substrate. However, the nature of the interactions between large area graphene and target substrates is unknown. Here, we report on measurements of the traction-separation relations, which represent the strength and range of adhesive interactions, and the adhesion energy between wet-transferred, CVD grown graphene and the native oxide surface of silicon substrates. These were determined by coupling interferometry measurements of the separation between the graphene and silicon with fracture mechanics concepts and analyses. The measured adhesion energy was 357 ± 16 mJ/m(2), which is commensurate with van der Waals interactions. However, the deduced traction-separation relation for graphene-silicon interactions exhibited a much longer range interaction than those normally associated with van der Waals forces, suggesting that other mechanisms are present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.