Abstract

The design and characterization of spatiotemporal nano-/micro-structural arrangement that enable real-time and wide-spectrum molecular analysis is reported and demonestrated in new horizons of biomedical applications, such as wearable-spectrometry, ultra-fast and onsite biopsy-decision-making for intraoperative surgical oncology, chiral-drug identification, etc. The spatiotemporal sesning arrangement is achieved by scalable, binder-free, functionalized hybrid spin-sensitive (<↑| or <↓|) graphene-ink printed sensing layers on free-standing films made of porous, fibrous, and naturally helical cellulose networks in hierarchically stacked geometrical configuration (HSGC). The HSGC operates according toa time-space-resolved architecture that modulate the mass-transfer rate for separation, eluation and detection of each individual compound within a mixture of the like, hereby providing a mass spectrogram. The HSGC could be used for a wide range of applictions, including fast and real-time spectrogram generator of volatile organic compounds during liquid-biopsy, without the need of any immunochemistry-staining and complex power-hungry cryogenic machines; and wearable spectrometry that provide spectral signature of molecular profiles emiited from skin in the course of various dietry conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.