Abstract

LiAlH4 modified by different weight ratios of fluorographite (FGi) can be synthesized through mechanical ball-milling and their dehydrogenation behaviors were investigated. LiAlH4 particles distributed on the FGi surface with greatly decreased sizes are achieved, comparing with ball-milled pristine LiAlH4. Greatly reduced dehydrogenation temperatures are discovered in LiAlH4-FGi composites. Among these composites, LiAlH4-40FGi composite exhibits an ultra-fast hydrogen release at very low temperature as 61.2 °C, and 5.7 wt% hydrogen is liberated in seconds. Besides, the released hydrogen is of high purity according to MS test. Furthermore, XRD analysis on the dehydrogenated products proves that FGi changes the dehydrogenation reaction pathway of LiAlH4, through which the dehydrogenation reaction enthalpy change is remarkably reduced, leading to greatly improved hydrogen desorption properties. Such investigations have discovered the potential of solid-state way of producing hydrogen under ambient temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.