Abstract

To characterize the effect of ulipristal acetate (UPA) treatment on transforming growth factor (TGF) canonical and noncanonical signaling pathways in uterine leiomyoma tissue and cells. UPA decreased extracellular matrix in surgical specimens; we characterize the mechanism in this study. Laboratory study. University. Exposure of leiomyoma cell lines to UPA. RNAseq was performed on matched myometrium and leiomyoma surgical specimens of placebo- and UPA-treated patients. Changes in gene expression and protein were measured using quantitative polymerase chain reaction and western immunoblot analysis, respectively. In surgical specimen, mRNA for TGF-β3 was elevated 3.75-fold and TGFR2 was decreased 0.50-fold in placebo leiomyomas compared with myometrium. Analysis of leiomyomas from UPA-treated women by western blot revealed significant reductions of active TGF-β3 (0.64 ± 0.12-fold), p-TGFR2 (0.56 ± 0.23-fold), pSmad 2 (0.54 ± 0.04-fold), and pSmad 3 (0.65 ± 0.09-fold) compared with untreated leiomyomas. UPA treatment demonstrated statistically significant reduction in collagen 1, fibronectin, and versican proteins. Notably, there was a statistically significant increase of the extracellular matrix protein fibrillin in leiomyoma treated with UPA (1.48 ± 0.41-fold). Data from invitro assays with physiologic concentrations of UPA supported the invivo findings. TGF-β pathway is highly up-regulated in leiomyoma and is directly responsible for development of the fibrotic phenotype. UPA attenuates this pathway by reducing TGF-β3 message and protein expression, resulting in a reduction in TGF-β canonical signaling. In addition, UPA significantly increased fibrillin protein expression, which can serve to bind inactive TGF-β complexes. Therefore, UPA inhibits leiomyoma fibrosis by decreasing active TGF-β3 and diminishing signaling through the canonical pathway. NCT00290251.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.