Abstract

This paper reports the design, fabrication, and characterization of piezoelectric quartz MEMS magnetometers based on acoustic coupling between resonance modes. The magnetic sensors described herein employ a novel transduction scheme to upconvert the desired near-DC magnetic field signal (using the fundamental flexural mode) onto frequency modulated (FM) sidebands of the primary quartz thickness shear (TS) oscillation at frequencies above 500 MHz. First-generation devices exhibit flexural and TS resonances at 2.77 kHz and at 583.31 MHz, respectively, and magnetic sensitivity of 63.6 V/T was measured with an AC loop current of 9.2 mA. This novel sensing method, intended for electronic compassing, illuminates the interactions between low and high frequency acoustic modes within resonant devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.