Abstract

Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate within the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from human bone marrow to identify the proteins interacting with Smad4. Two full-length cDNA clones for Ubc9 were identified, and the potential functions of Ubc9 were investigated. To determine the role of Ubc9 in the BMP signaling pathway, the endogenous transcription of Ubc9 in the human osteoblast cell line Saos-2 was silenced using siRNA. The expression of BMP-induced transcription factors, including Runx2, Dlx5, Msx2, and Osterix, was examined using real-time reverse transcription polymerase chain reaction (qRT-PCR), and the protein expression of Smad4, Smad1, phosphorylated Smad1, and BMP type I receptors was determined by Western blotting. The subcellular localization of Smad1 and Smad4 was observed using immunofluorescence staining after Ubc9 silencing. To determine whether Smad4 is sumoylated in vitro, recombinant Smad4 was purified and sumoylated Smad4 was visualized using Western blotting. The mRNA expression of various transcription factors was markedly inhibited after Ubc9 silencing. The protein levels of Smad4 and phosphorylated Smad1 decreased in a dose-dependent manner according to the amount of siRNA applied. Gene silencing also decreased the nuclear accumulation of Smad1 and Smad4. The sumoylation assay showed that sumoylated Smad4 is present and dependent on Ubc9 in vitro, which was confirmed by pretreatment with Senp2, a SUMO-protease. These results suggest that Ubc9 promotes the stability of sumoylated Smad4. Furthermore, the expression of key transcription factors, phosphorylated Smad1 protein, and the nuclear accumulation of Smad1 and Smad4 are inhibited by Ubc9 silencing. Thus, Ubc9 plays an important role in the up-regulation of the BMP signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.