Abstract
Recent studies from this laboratory have demonstrated that human manganese superoxide dismutase (MnSOD) is a target for tyrosine nitration in several chronic inflammatory diseases including chronic organ rejection, arthritis, and tumorigenesis. Furthermore, we demonstrated that peroxynitrite (ONOO−) is the only known biological oxidant competent to inactivate enzymatic activity, nitrate critical tyrosine residues, and induce dityrosine formation in MnSOD. To elucidate the differential contributions of tyrosine nitration and oxidation during enzymatic inactivation, we now compare ONOO−treatment of native recombinant human MnSOD (WT-MnSOD) and a mutant, Y34F-MnSOD, in which tyrosine 34 (the residue most susceptible to ONOO−-mediated nitration) was mutated to phenylalanine. Both WT-MnSOD (IC50= 65 μM, 15 μM MnSOD) and Y34F-MnSOD (IC50= 55 μM, 15 μM Y34F) displayed similar dose-dependent sensitivity to ONOO−-mediated inactivation. Compared to WT-MnSOD, the Y34F-MnSOD mutant demonstrated significantly less efficient tyrosine nitration and enhanced formation of dityrosine following treatment with ONOO−. Collectively, these results suggest that complete inactivation of MnSOD by ONOO−can occur independent of the active site tyrosine residue and includes not only nitration of critical tyrosine residues but also tyrosine oxidation and subsequent formation of dityrosine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.