Abstract

2′,2′,4,4′-tetrabromo diphenyl ether (BDE-47), one of the most abundant congeners of commercial pentaBDE utilized as flame retardants, has been phased out of production due to its potential neural toxicity and endocrine disrupting activities, and yet still present in the environment. Several alternatives to BDE-47, including tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), tetrachlorobisphenol A (TCBPA) and decabromodiphenyl ether (BDE-209), are presently employed without restrictions and their potential toxic effects on human neural development are still unclear. In this study, we utilized a human neural stem cell (hNSC)-based system to evaluate the potential developmental neurotoxic effects of the above-mentioned five chemicals, at environment and human exposure relevant concentrations. We found that those compounds slightly altered the expression of hNSC identity markers (SOX2, SOX3 and NES), without impairing cell viability or proliferation, in part by either modulating glycogen synthase kinase 3 beta (GSK3β) signaling (TBBPS, TCBPA and BDE-47), and slightly disturbing the NOTCH pathway (TBBPA, TBBPS and TCBPA). Moreover, the five chemicals seemed to alter hNSC differentiation by perturbing triiodothyronine (T3) cellular signaling. Thus, our findings suggest that the five compounds, especially TBBPS, TCBPA, and BDE-47, may affect hNSC self-renewal and differentiation abilities and potentially elicit neural developmental toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.