Abstract

Let $k$ be a non-archimedean local field with residual characteristic $p$. Let $G$ be a connected reductive group over $k$ that splits over a tamely ramified field extension of $k$. Suppose $p$ does not divide the order of the Weyl group of $G$. Then we show that every smooth irreducible complex representation of $G(k)$ contains an 𝔰-type of the form constructed by Kim--Yu and that every irreducible supercuspidal representation arises from Yu's construction. This improves an earlier result of Kim, which held only in characteristic zero and with a very large and ineffective bound on $p$. By contrast, our bound on $p$ is explicit and tight, and our result holds in positive characteristic as well. Moreover, our approach is more explicit in extracting an input for Yu's construction from a given representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.