Abstract
Type 1 Diabetes Mellitus (T1DM) progression has a direct impact on brain microstructural integrity and typical functional organization from the early stages of neurodevelopment. Diffusion Tensor Imaging (DTI) is a neuroimaging method that has proven sensitive to changes in white matter microstructure. Using diffusion-weighted probabilistic tractography methods, we aim to evaluate the white matter integrity and anatomical relationships within the Default Mode Network (DMN) brain regions, which have been proven to be particularly affected by T1DM in a group of eighteen carefully selected clinically well-controlled young T1DM patients versus eighteen healthy matched controls according to sex, age, and education level. Results showed no relevant differences in the anatomical distribution of DMN between the groups. However, the transitivity graph metric was significantly lower in T1DM patients, who also showed weaker connectivity between the left ventral prefrontal cortex and the left medial temporal gyrus, representing the anatomical trajectory of the arcuate fasciculus. Considering that neural myelination is affected by language input and the critical role of language-related structures on brain development, the current findings denote early ill-driven brain modifications to better adapt to the increasing daily demands.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have