Abstract

Plant immunity must be tightly controlled to avoid activation of defense mechanisms in the absence of pathogen attack. Protein phosphorylation is a common mechanism regulating immune signaling. In Arabidopsis thaliana, nine members of the type one protein phosphatase (TOPP) family (also known as protein phosphatase 1, PP1) have been identified. Here, we characterized the autoimmune phenotype of topp4-1, a previously identified dominant-negative mutant of TOPP4. Epistasis analysis showed that defense activation in topp4-1 depended on NON-RACE-SPECIFIC DISEASE RESISTANCE1, PHYTOALEXIN DEFICIENT4, and the salicylic acid pathway. We generated topp1/4/5/6/7/8/9 septuple mutants to investigate the function of TOPPs in plant immunity. Elevated defense gene expression and enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 in the septuple mutant indicate that TOPPs function in plant defense responses. Furthermore, TOPPs physically interacted with mitogen-activated protein kinases (MAPKs) and affected the MAPK-mediated downstream defense pathway. Thus, our study reveals that TOPPs are important regulators of plant immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.