Abstract

Type III secretion (T3S) is a mechanism that is central to the biology of the Chlamydiaceae and many other pathogens whose virulence depends on the translocation of toxic effector proteins to cytosolic targets within infected eukaryotic cells. Biomathematical simulations, using a previously described model of contact-dependent, T3S-mediated chlamydial growth and late differentiation, suggest that chlamydiae contained in small non-fusogenic inclusions will persist. Here, we further discuss the model in the context of in vitro-persistent, stress-induced aberrantly enlarged forms and of recent studies using small molecule inhibitors of T3S. A general mechanism is emerging whereby both early- and mid-cycle T3S-mediated activities and late T3S inactivation upon detachment of chlamydiae from the inclusion membrane are crucial for chlamydial intracellular development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.