Abstract
Post-natal cutaneous wound healing is characterized by development of collagen-rich scar lacking the architecture and functional integrity of unwounded tissue. Directing cell behaviors to efficiently heal wounds while minimizing scar formation remains a major wound management goal. Herein, we demonstrate type III collagen (Col3) as a critical regulator of re-epithelialization and scar formation during healing of Col3-enriched, regenerative (Acomys), scar-permissive (CD-1 Mus and wild-type Col3B6/B6 mice), and Col3-deficient, scar-promoting (Col3F/F, a murine conditional knockdown model) cutaneous wound models. We define a scar-permissive fibrillar collagen architecture signature characterized by elongated and anisotropically-aligned collagen fibers that is dose-dependently suppressed by Col3. Further, loss of Col3 alters how cells interpret their microenvironment - their mechanoperception - such that Col3-deficient cells display mechanically-active phenotypes in the absence of increased microenvironmental stiffness via upregulation and engagement of the profibrotic integrin α11. Further understanding Col3's role in regulating matrix architecture and mechanoresponses may inform clinical strategies that harness pro-regenerative mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.