Abstract
Clustered regularly interspaced short palindromic repeats and associated Cas proteins (CRISPR-Cas) provide prokaryotes with adaptive immunity against invasion by plasmids or phages. In Salmonella, the type I-E CRISPR-Cas system is typically considered silent in immunity against foreign genetic elements. To elucidate the role of the CRISPR-Cas system, we chose Salmonella enterica serovar Pullorum S06004 as a model organism due to its four spacers and well-defined biological characteristics observed in previous studies. Western blot analysis revealed expression of Cas3 in S06004 cultured in vitro, but plasmid transformation assays demonstrated that both wild-type (WT) and S06004 strains overexpressing LeuO (a positive regulator of CRISPR-Cas) showed no immunity against the target plasmid. RNA-Seq analysis detected significant downregulation of the fim cluster, encoding type I fimbriae, and T3SS1-related genes in the cas cluster mutant compared to the WT. This downregulation was further confirmed in mutants of CR1 and individual cas genes by qRT-PCR. Consequently, mutants of CR1 and cas clusters exhibited decreased invasion of chicken hepatocellular carcinoma cells. The consistent regulation of T3SS1 genes by the CRISPR-Cas system in S. Pullorum, S. Enteritidis, and S. Typhimurium indicates a common role for the type I-E CRISPR-Cas system in promoting bacterial virulence. However, the specific molecular mechanisms underlying this regulation require further investigation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have