Abstract

Soil salinity affects a large proportion of the land worldwide, forcing plants to evolve a number of mechanisms to cope with salt stress. Cytokinin plays a role in the plant response to salt stress, but little is known about the mechanism by which cytokinin controls this process. We used a molecular genetics approach to examine the influence of cytokinin on sodium accumulation and salt sensitivity in Arabidopsis thaliana. Cytokinin application was found to increase sodium accumulation in the shoots of Arabidopsis, but had no significant affect on the sodium content in the roots. Consistent with this, altered sodium accumulation phenotypes were observed in mutants of each gene class of the cytokinin signal transduction pathway, including receptors, phospho-transfer proteins, and type-A and type-B response regulators. Expression of the gene encoding Arabidopsis high-affinity K(+) transporter 1;1 (AtHKT1;1), a gene responsible for removing sodium ions from the root xylem, was repressed by cytokinin treatment, but showed significantly elevated expression in the cytokinin response double mutant arr1-3 arr12-1. Our data suggest that cytokinin, acting through the transcription factors ARR1 and ARR12, regulates sodium accumulation in the shoots by controlling the expression of AtHKT1;1 in the roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.