Abstract

Abstract Cytokine regulation of endocytic activity in primary human macrophages was studied to define ultrastructural changes and mechanisms of pinocytic regulation associated with cytokines secreted by activated T cells. The effects of IFN-γ (type 1) and IL-4/IL-13 and IL-10 (type 2) cytokines on fluid phase and mannose receptor-mediated endocytosis were assessed by horseradish peroxidase and colloidal gold-BSA uptake and computer-assisted morphometric analysis. IL-4 and IL-13 enhanced fluid phase pinocytosis and mannose receptor-mediated uptake by activation of phosphatidylinositol 3-kinase. Inhibition of actin assembly showed that both cytokines exerted actin-dependent and -independent effects. Ultrastructurally, IL-4 and IL-13 increased tubular vesicle formation underneath the plasma membrane and at pericentriolar sites, concurrent with decreased particle sorting to lysosomes. By contrast, IL-10 or IFN-γ decreased both fluid phase pinocytosis and mannose receptor-mediated uptake. IFN-γ stimulated increased particle sorting to perinuclear lysosomes, while IL-10 decreased this activity. In summary, our data document differential effects on macrophage endocytic functions by type 1 or type 2 cytokines associated with induction and effector pathways in immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.