Abstract
AbstractRigorous calculations of leakage in water distribution networks (WDNs) requires the adoption of a leakage-pressure relationship and the numerical solution of a set of differential (flow continuity and head loss) equations for each pipe of the network. In order to limit the computational effort necessary to solve differential equations, existing hydraulic solvers commonly make use of simplified methods to estimate pipe leakage and convert it into lumped demands at pipe end nodes. In this paper, three well consolidated literature methods for water leakage calculation and allocation to pipe end nodes are compared against the numerical solution of the differential equation, used as a benchmark. A novel method, based on a two-step estimation of pipe nodal piezometric levels was also proposed in this study. Methods were compared considering a single pipe system and using a dimensionless approach for generalisation of results. An application to a water distribution network case study was carried out to s...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Water Resources Planning and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.