Abstract

Two-stage sequential treatment of tannery effluent was conducted employing a wetland plant, Spirodela polyrrhiza (L.) Schleid., and chromium (Cr) resistant bacterial strains. The bacterial strains were isolated from Cr-enriched environmental matrices and rhizosphere of Spirodela polyrrhiza. The phyto-rhizoremediation of tannery effluent by Spirodela and its rhizospheric bacteria (Cellulomonas biazotea APBR1-6, Bacillus safensis APBR2-12, Staphylococcus warneri APBR3-5, Microbacterium oleivorans APBR2-6), followed by microremediation by Cr resistant bacteria (Micrococcus luteus APBS5-1, Bacillus pumilus APBS5-2, Bacillus flexus APBE3-1, Virgibacillus sediminis APBS6-1) resulted in reduction of pollution parameters [COD (81.2%), total Cr (97.3%), Cr(VI) (99.3%), Pb(II) (97.0%), Ni (95.7%)]. The LC–MS analysis showed that many pollutants detected in untreated tannery effluent were diminished after bioremediation or long chains of alcohol polyethoxylates viz. C18EO6 in untreated effluent were broken down into smaller unit of alcohol polyethoxylate (+HHO[CH2CH2O]H), indicating that bacteria and Spirodela polyrrhiza, alongwith its rhizospheric associates utilized them as carbon and energy source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.