Abstract
This paper proposes a two-stage identification approach for the parameter identification of autoregressive moving average with exogenous variable(ARMAX) model.First,a bias-eliminated least squares method is employed to identify the autoregressive part with exogenous variable(ARX) .Then,the Durbin s method is employed to transform the parameter identification of the moving average(MA) part into that of a long autoregressive(AR) model.The MA parameters are derived directly from the parameter relationship between the MA part and its equivalent long AR model.Finally,the noise variance can be computed by using the identified MA parameters.The performance comparison against the extended least-squares method in numerical simulations validates the effectiveness of the two-stage identification approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.