Abstract
An experimental study of flow within sheet cavities is performed in a cavitation tunnel equipped with a Venturi-type test section. The flow is investigated by means of a double optical probe allowing void fraction, velocity, and chord length of the vapor structures to be measured. Laser velocimetery, wall pressure measurements, and visualization techniques are also used to characterize the liquid flow around the cavity. The consistency of the experimental results was checked though mass and momentum balances. The effects of Reynolds and cavitation numbers are analyzed. Special attention is given to the dynamic behavior of the flow, and to the vapor flow rate within the cavities. The measurements show a complex two-phase flow characterized by the presence of an extended reversed flow occurring along the solid surface and a regular decrease in void fraction along the cavity. The phase transitions seem to be mainly restricted by the dynamic of the bubbles and thermodynamic effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.