Abstract
Designed with a two-in-one strategy, the magnetic mesoporous γ-Fe(2)O(3) nanocrystal clusters (m-γ-Fe(2)O(3)) have been successfully prepared for integrating the functions of effective enrichment and quick separation of phosphopeptides into a single architecture. First, the mesoporous Fe(3)O(4) nanocrystal clusters (mFe(3)O(4)) were synthesized by solvothermal reaction and then were subjected to calcination in air to form m-γ-Fe(2)O(3). The obtained m-γ-Fe(2)O(3) have spherical morphology with uniform particle size of about 200 nm and mesoporous structure with the pore diameter of about 9.7 nm; the surface area is as large as 117.8 m(2)/g, and the pore volume is 0.34 cm(3)/g. The m-γ-Fe(2)O(3) possessed very high magnetic responsiveness (Ms = 78.8 emu/g, magnetic separation time from solution is less than 5 s) and were used for the selective enrichment of phosphopeptides for the first time. The experimental results demonstrated that the m-γ-Fe(2)O(3) possessed high selectivity for phosphopeptides at a low molar ratio of phosphopeptides/nonphosphopeptides (1:100), high sensitivity (the detection limit was at the fmol level), high enrichment recovery (as high as 89.4%), and excellent speed (the enrichment can be completed in 10 min). Moreover, this material is also quite effective for enrichment of phosphopeptides from the real sample (drinking milk), showing great potential in the practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.