Abstract
Standard phase-shifting interferometry (PSI) generally requires collecting at least three phase-shifted interferograms to extract the physical quantity being measured. Here, we propose the application of a simple two-frame PSI for the testing of a range of optical surfaces, including flats, spheres, and aspheres. The two-frame PSI extracts modulated phase from two randomly phase-shifted interferograms using a Gram-Schmidt algorithm, and can work in either null testing or non-null testing modes. Since only two interferograms are used for phase demodulation and the phase shift amount can be random, requirements on environmental conditions and phase shifter calibration are greatly relaxed. Experimental results of three different mirrors suggest that the two-frame PSI can achieve comparable measurement precision with conventional multi-frame PSI, but has faster data acquisition speed and less stringent hardware requirements. The proposed two-frame PSI expands the flexibility of PSI and holds great potential in many applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.