Abstract

Two-factor authentication (TFA), enabled by hardware tokens and personal devices, is gaining momentum. The security of TFA schemes relies upon a human-memorable password p drawn from some implicit dictionary D and a t-bit device-generated one-time PIN z. Compared to password-only authentication, TFA reduces the probability of adversary’s online guessing attack to 1/(|D| ∗ 2) (and to 1/2 if the password p is leaked). However, known TFA schemes do not improve security in the face of offline dictionary attacks, because an adversary who compromises the service and learns a (salted) password hash can still recover the password with O(|D|) amount of effort. This password might be reused by the user at another site employing password-only authentication. We present a suite of efficient novel TFA protocols which improve upon password-only authentication by a factor of 2 with regards to both the online guessing attack and the offline dictionary attack. To argue the security of the presented protocols, we first provide a formal treatment of TFA schemes in general. The TFA protocols we present enable utilization of devices that are connected to the client over several channel types, formed using manual PIN entry, visual QR code capture, wireless communication (Bluetooth or WiFi), and combinations thereof. Utilizing these various communication settings we design, implement, and evaluate the performance of 13 different TFA mechanisms, and we analyze them with respect to security, usability (manual effort needed beyond typing a password), and deployability (need for additional hardware or software), showing consistent advantages over known TFA schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.