Abstract

Graphene-based analogs and derivatives provide numerous routes to achieve unconventional properties and potential applications. Particularly, two-dimensional (2D) binary materials of group-IV elements are drawing increasing interest. In this work, we proposed the design of three 2D graphene-based materials, namely, XC6-enes (X = Ge, Sn, or Pb), based on first-principles calculations. These new materials possess intriguing properties superior to graphene, such as biaxial negative Poisson's ratio (NPR), moderate bandgap, and high carrier mobility. These XC6-enes comprise sp2 carbon and sp3 X (X = Ge, Sn, Pb) atoms with hexagonal and pentagonal units by doping graphene with X atoms. The stability and plausibility of these 2D materials are verified from formation energies, phonon spectra, ab initio molecular dynamic simulations, and elastic constants. The incorporation of X atoms leads to highly anisotropic mechanical properties along with NPR due to the unique tetrahedral structure and hat-shaped configuration. In the equilibrium state, all the XC6-enes are moderate-band-gap semiconductors. The carrier mobilities of the XC6-enes were highly anisotropic (∼104 cm-2 V-1 s-1 along the [010]-direction). Such outstanding properties make the 2D frameworks promising for application in novel electronic and micromechanical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.