Abstract

Surface-enhanced Raman scattering (SERS) has been regarded as an attractive technique for efficient molecular sensing because of its nondestructive detection, fast response and high sensitivity. However, the majority of studies on SERS are still based on noble metals (e.g. Au, Ag), which suffer from the drawbacks of high-cost, low uniformity and poor stability, thus limiting their widespread use. Graphene shows an efficient SERS performance because of its two-dimensional (2D) atomically flat surface, large specific surface area, high stability and unique electronic/optical properties, which open up new avenues for SERS research. In recent years, other 2D inorganic layer materials, such as transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), black phosphorus (BP), and MXenes, have also attracted increasing research attention. We summarize the SERS mechanisms and state-of-the-art progress on substrates based on 2D materials, including graphene and other 2D inorganic layer materials. The challenges and prospects for future research on high-performance SERS substrates are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.